[TeX] 数式メーカー ver0.93

MathJaxを使用した一行数式メーカーです。

(Macでは、バックスラッシュはoption + ¥)


$$thank you$$thank you
 

$$t$$t
 

$$$$
 

$$39$$39
 

$$3と15分の1$$3と15分の1
 

$$3 1/15$$3 1/15
 

$$T(n)=(T(a)×a)/n$$T(n)=(T(a)×a)/n
 

$$∫log(logx)dx$$∫log(logx)dx
 

$$y=1/r^2$$y=1/r^2
 

$$2025=(1+2+…+9)^2=1^3+2^3+…+9^3$$2025=(1+2+…+9)^2=1^3+2^3+…+9^3
 

$$2025=(1+2+$$2025=(1+2+
 

$$$$
 

$$100(1+2%){1+8%}$$100(1+2%){1+8%}
 

$$100*(1+2%)/(1+8%)$$100*(1+2%)/(1+8%)
 

$$\sqrt{(X_{middle}-X_{center})^2+(Z_{middle}-Z_{center})^2}=rcos(\frac{θ_{AB}}{2})$$\sqrt{(X_{middle}-X_{center})^2+(Z_{middle}-Z_{center})^2}=rcos(\frac{θ_{AB}}{2})
 

$$X_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+X_{middle}$$X_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+X_{middle}
 

$$Z_{center}=m(X_{center}-X_{middle})+Z_{middle}$$Z_{center}=m(X_{center}-X_{middle})+Z_{middle}
 

$$Z_{center}=m(x_{center}-x_{middle})+Z_{middle}$$Z_{center}=m(x_{center}-x_{middle})+Z_{middle}
 

$$m=-\frac{X_B-X_A}{Z_B-Z_A}$$m=-\frac{X_B-X_A}{Z_B-Z_A}
 

$$X_{middle}=\frac{X_A+X_B}{2}$$X_{middle}=\frac{X_A+X_B}{2}
 

$$X_middle=\frac{X_A+X_B}{2}$$X_middle=\frac{X_A+X_B}{2}
 

$$-\frac{X_B-X_A}{Z_B-Z_A}$$-\frac{X_B-X_A}{Z_B-Z_A}
 

$$x_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+x_{middle}
 

$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(\frac{θ_{AB}}{2})$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(\frac{θ_{AB}}{2})
 

$$x_{center}=-\sqrt{\frac{(rcos(\frac{θ}{2}))^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{(rcos(\frac{θ}{2}))^2}{m^2+1}}+x_{middle}
 

$$Z_B=Z_{B2}-(S+r_{stylus})sin(θ_{AB})$$Z_B=Z_{B2}-(S+r_{stylus})sin(θ_{AB})
 

$$X_B=X_{B2}-(S+r_{stylus})cos(θ_{AB})$$X_B=X_{B2}-(S+r_{stylus})cos(θ_{AB})
 

$$r=\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}$$r=\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}
 

$$\frac{\sqrt{(X_B-r=X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}$$\frac{\sqrt{(X_B-r=X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}
 

$$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}$$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}
 

$$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_AB}{2})}$$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_AB}{2})}
 

$$\flac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\flac{θ_AB}{2})}$$\flac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\flac{θ_AB}{2})}
 

$$x_{center}=-\sqrt{\frac{[rcos(2.5°)]^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{[rcos(2.5°)]^2}{m^2+1}}+x_{middle}
 

$$x_{center}=-\sqrt{\frac{{rcos(2.5°)}^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{{rcos(2.5°)}^2}{m^2+1}}+x_{middle}
 

$$x_{center}=-\sqrt{\frac{(rcos(2.5°))^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{(rcos(2.5°))^2}{m^2+1}}+x_{middle}
 

$$\frac{2}{23}$$\frac{2}{23}
 

$$\frac{1}$$\frac{1}
 

$$x_{center}=-\sqrt{\frac{1}}$$x_{center}=-\sqrt{\frac{1}}
 

$$x_{center}=-\sqrt{2}$$x_{center}=-\sqrt{2}
 

$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(2.5°)
 

$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)}^2}=rcos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)}^2}=rcos(2.5°)
 

$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}}=rcos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}}=rcos(2.5°)
 

$$\sqrt{(x_{middle}}$$\sqrt{(x_{middle}}
 

$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}
 

$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°)
 

$$\sqrt{2}$$\sqrt{2}
 

$$/sqrt{2}$$/sqrt{2}
 

$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°)
 

$$sqrt1$$sqrt1
 

$$z_{center}=m_{middle}(x-x_{middle})+z_{middle}$$z_{center}=m_{middle}(x-x_{middle})+z_{middle}
 

$$Z_{center}=m_{middle}(x-x_{middle})+Z_{middle}$$Z_{center}=m_{middle}(x-x_{middle})+Z_{middle}
 

$$Z_{center}=m{middle}(x-x_{middle})+Z_{middle}$$Z_{center}=m{middle}(x-x_{middle})+Z_{middle}
 

$$Z_{center}$$Z_{center}
 

$$Z_(center)$$Z_(center)
 

$$$$
 

$$1+2$$1+2
 

$$$$
 

$$y=3x+8$$y=3x+8
 

$$2(iro)$$2(iro)
 

$$1$$1
 

$$ORIGIN$$ORIGIN
 

$$Qf=Q/(1-m)$$Qf=Q/(1-m)
 

$$Qy = A(-5^2) + B × -5 + C$$Qy = A(-5^2) + B × -5 + C
 

$$Qx = AP^2 + BP + C$$Qx = AP^2 + BP + C
 

$$Qz = \frac{Q}{Qx} × Qy$$Qz = \frac{Q}{Qx} × Qy
 

$$Qn = Qt × \frac{273+to}{273+t} × \frac{B}{1013}$$Qn = Qt × \frac{273+to}{273+t} × \frac{B}{1013}
 

$$Qn = Qt*273+to/273+t*B/1013$$Qn = Qt*273+to/273+t*B/1013
 

$$Vo1={(R1+R2)/R1}・Vin$$Vo1={(R1+R2)/R1}・Vin
 

$$00001110110101100010111001110110$$00001110110101100010111001110110
 

$$pktn$$pktn
 

$$$$
 

$$\[ \mathcal{C}(x$$\[ \mathcal{C}(x
 

$$64$$64
 

$$15$$15
 

$$10$$10
 

$$lim$$lim
 

$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k k!}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k k!}{\dfrac{\left( 2n\right) !}{2^{n}}}
 

$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k}{\dfrac{\left( 2n\right) !}{2^{n}}}
 

$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_n \mathrm{C}_r}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_n \mathrm{C}_r}{\dfrac{\left( 2n\right) !}{2^{n}}}
 

$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !}{\dfrac{\left( 2n\right) !}{2^{n}}}
 

$$$$
 

$$$$
 

$$S=234 n=0 ∑ ∞ ​ ( 2 1 ​ ) n$$S=234 n=0 ∑ ∞ ​ ( 2 1 ​ ) n
 

$$S=234 n=0 ∑ ∞ ​ ( 2 1 ​ ) n$$S=234 n=0 ∑ ∞ ​ ( 2 1 ​ ) n
 

$$n \simeq p = \frac{4k}{N}$$n \simeq p = \frac{4k}{N}
 

$$n ~- p = \frac{4k}{N}$$n ~- p = \frac{4k}{N}
 

$$n ~= p = \frac{4k}{N}$$n ~= p = \frac{4k}{N}
 

$$\frac{\frac{πr^2}{4}}{r^2} = \frac{π}{4}$$\frac{\frac{πr^2}{4}}{r^2} = \frac{π}{4}
 

$$\frac{πr^2}{4}\frac{r^2} = \frac{π}{4}$$\frac{πr^2}{4}\frac{r^2} = \frac{π}{4}
 

$$\frac{πr^2}{4}{r^2} = \frac{π}{4}$$\frac{πr^2}{4}{r^2} = \frac{π}{4}
 

$$\frac{2}{3}$$\frac{2}{3}
 

$$$$
 

$$E = 10^{(-1/slope)}-1$$E = 10^{(-1/slope)}-1
 

$$E = 10^{-1/slope}-1$$E = 10^{-1/slope}-1
 

$$E = 10^(-1/slope)-1$$E = 10^(-1/slope)-1
 

$$E = 10^[-1/slope]-1$$E = 10^[-1/slope]-1
 

$$E = 10[-1/slope]-1$$E = 10[-1/slope]-1
 

$$a=$$a=
 

$$yの変域:$$yの変域:
 

$$xの変域:$$xの変域:
 

$$xの変域$$xの変域
 

$$W=$$W=
 

$$v_A – v_B = \frac{2 \text{ km}}{\frac{5}{6} \text{ h}} = \frac{2 \times 6}{5} = \frac{12}{5} \text{ km/h} = 2.4 \text{ km/h} \]$$v_A – v_B = \frac{2 \text{ km}}{\frac{5}{6} \text{ h}} = \frac{2 \times 6}{5} = \frac{12}{5} \text{ km/h} = 2.4 \text{ km/h} \]
 

$$2+3$$2+3
 

$$an+1=pan-q$$an+1=pan-q
 

$$$$
 

$$FC2P^2v$$FC2P^2v
 

$$シグマ n*n$$シグマ n*n
 

$$Σ$$Σ
 

$$$$
 

$$$$
 

$$$$
 

$$2x²-x-15=0$$2x²-x-15=0
 

$$$$
 

$$/sigma$$/sigma
 

$$$$
 

$$$$
 

$$$$
 

$$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{…}}}}}} = 2$$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{…}}}}}} = 2
 

$$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }}}}}}$$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }}}}}}
 

$$\”\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }”$$\”\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }”
 

$$\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }$$\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }
 

$$“an​=∑k=1n​bk​”$$“an​=∑k=1n​bk​”
 

$$“an​\=∑k\=1n​bk​”$$“an​\=∑k\=1n​bk​”
 

$$“an​\=∑k\=1n​bk​”$$“an​\=∑k\=1n​bk​”
 

$$V²$$V²
 

$$1*2$$1*2
 

$$$$
 

$$$$
 

$$At$$At
 

$$ax^2+bx+c$$ax^2+bx+c
 

$$$$
 

$$V-I₃R₃/I₃・(R₂+R₃)/R₂$$V-I₃R₃/I₃・(R₂+R₃)/R₂
 

$$V-I₃R₃$$V-I₃R₃
 

$$$$
 

$$$$
 

$$労働生産性 = \frac{経済的成果(\text{output})}{人数・時間(input)}$$労働生産性 = \frac{経済的成果(\text{output})}{人数・時間(input)}
 

$$労働生産性 = \frac{経済的成果(output)}{人数・時間(input)}$$労働生産性 = \frac{経済的成果(output)}{人数・時間(input)}
 

$$あああ = \frac{労働生産性}{労働生産sネイ}$$あああ = \frac{労働生産性}{労働生産sネイ}
 

$$Sh$$Sh
 

$$logQ=26.53-1.09logY-4.99logA+3.87logB$$logQ=26.53-1.09logY-4.99logA+3.87logB
 

$$logQ=$$logQ=
 

$$logQ=a₁+a₂logY+a₃logA+a₄logB$$logQ=a₁+a₂logY+a₃logA+a₄logB
 

$$logQ=a1+a2logY+a3logA+a4logB$$logQ=a1+a2logY+a3logA+a4logB
 

$$logQ=a1$$logQ=a1
 

$$$$
 

$$癶$$癶
 

$$、$$、
 

$$𠘨$$𠘨
 

$$$$
 

$$X二乗$$X二乗
 

$$|H_{i+1} – H_i |$$|H_{i+1} – H_i |
 

$$|H_{I+1} + H_i |$$|H_{I+1} + H_i |
 

$$|H_(i+1) + H_i |$$|H_(i+1) + H_i |
 

$$H_i$$H_i
 

$$\documentclass{article} \usepackage{amsmath} \begin{document} \[ y = \begin{cases} 0 & \text{if } b + w_1 x_1 + w_2 x_2 \leq 0 \\ 1 & \text{if } b + w_1 x_1 + w_2 x_2 > 0 \end{cases} \] \end{document}$$\documentclass{article} \usepackage{amsmath} \begin{document} \[ y = \begin{cases} 0 & \text{if } b + w_1 x_1 + w_2 x_2 \leq 0 \\ 1 & \text{if } b + w_1 x_1 + w_2 x_2 > 0 \end{cases} \] \end{document}
 

$$$$
 

$$200$$200
 

$$ℓ$$ℓ
 

$$l$$l
 

$$f = st^-2$$f = st^-2
 

$$f(t) = st^-2$$f(t) = st^-2
 

$$t^-2$$t^-2
 

$$形質転換効率 (cfu⁄1 µg)=コロニー数 (平均値)×プラスミド量の補正 (1 µg⁄(X )µg)×サンプリング量の補正 (1.0 mL⁄0.1 mL)$$形質転換効率 (cfu⁄1 µg)=コロニー数 (平均値)×プラスミド量の補正 (1 µg⁄(X )µg)×サンプリング量の補正 (1.0 mL⁄0.1 mL)
 

$$sinE=g⁰m1$$sinE=g⁰m1
 

$$$$
 

$$xG$$xG
 

$$volleyball$$volleyball
 

$$sinE=g⁰m1$$sinE=g⁰m1
 

$$寒い$$寒い
 

$$寒い$$寒い
 

$$1010$$1010
 

$$$$
 

$$$$
 

$$$$
 

$$面積$$面積
 

$$365$$365
 

$$2833$$2833
 

$$\gamma(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta)$$\gamma(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta)
 

$$$$
 

$$r(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta)$$r(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta)
 

$$r= r(\theta)$$r= r(\theta)
 

$$(r、\theta)$$(r、\theta)
 

$$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx})^2}dt$$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx})^2}dt
 

$$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx}^2}dt$$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx}^2}dt
 

$$L(\gamma) =\int_{b}^{a} |\dot{\gamma}(t)|dt$$L(\gamma) =\int_{b}^{a} |\dot{\gamma}(t)|dt
 

$$|\dot{\gamma}|$$|\dot{\gamma}|
 

$$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{\dot{x}^2+\dot{y}^2}dt$$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{\dot{x}^2+\dot{y}^2}dt
 

$$\dot{\gamma}(c)\neq0$$\dot{\gamma}(c)\neq0
 

$$\dot{\gamma}(c)=0$$\dot{\gamma}(c)=0
 

$$\dot{\gamma}(c)$$\dot{\gamma}(c)
 

$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))   (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt})$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))   (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt})
 

$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))   (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt}$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))   (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt}
 

$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))   (\dot{x} = \frac{dx}{dt}$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))   (\dot{x} = \frac{dx}{dt}
 

$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))
 

$$\dot{\gamma}$$\dot{\gamma}
 

$$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{x^2+y^2}dt$$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{x^2+y^2}dt
 

$$L(\gamma) = \int_{b}^{a} \sqrtf(x) dx$$L(\gamma) = \int_{b}^{a} \sqrtf(x) dx
 

$$L(\gamma) = \int_{b}^{a} f(x) dx$$L(\gamma) = \int_{b}^{a} f(x) dx
 

$$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} =\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t$$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} =\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t
 

$$\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t$$\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t
 

$$\sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2$$\sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2
 

$$\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2$$\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2
 

$$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2$$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2
 

$$\Delta x := x(t+\Delta t) – x(t)、  \Delta y := y(t+\Delta t) – y(t)$$\Delta x := x(t+\Delta t) – x(t)、  \Delta y := y(t+\Delta t) – y(t)
 

$$\Delta x :=$$\Delta x :=
 

$$t = tan(r/2)$$t = tan(r/2)
 

$$t = tan(s/2)$$t = tan(s/2)
 

$$x(r) = cosr、  y(r)= sinr   (-\pi \leq r \leqq \pi)$$x(r) = cosr、  y(r)= sinr   (-\pi \leq r \leqq \pi)
 

$$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2}  (t\in \mathbb{R})$$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2}  (t\in \mathbb{R})
 

$$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2}  (t\in \mathbb{R}$$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2}  (t\in \mathbb{R}
 

$$\gamma (t) = (t、f(t))$$\gamma (t) = (t、f(t))
 

$$|\gamma (t+\Delta t) – \gamma (t)|$$|\gamma (t+\Delta t) – \gamma (t)|
 

$$\gamma (t) = (x(t)、y(t)) (a\leqq t \leqq b)$$\gamma (t) = (x(t)、y(t)) (a\leqq t \leqq b)
 

$$F_y(x_0、y_0) = \frac{\delta F}{\delta y} \neq 0$$F_y(x_0、y_0) = \frac{\delta F}{\delta y} \neq 0
 

$$\gamma (t) = (x(t)、y(t))$$\gamma (t) = (x(t)、y(t))
 

$$\gamma[$$\gamma[
 

$$(a^2-x^2-y^2)^3 – 27a^2x^2y^2 = 0$$(a^2-x^2-y^2)^3 – 27a^2x^2y^2 = 0
 

$$(x^2 + y^2)^2 – a^2(x^2 – y^2) = 0$$(x^2 + y^2)^2 – a^2(x^2 – y^2) = 0
 

$$\frac{x^2}{a^2} – \frac{y^2}{b^2} – 1 = 0$$\frac{x^2}{a^2} – \frac{y^2}{b^2} – 1 = 0
 

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1 = 0$$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1 = 0
 

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1=0$$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1=0
 

$$F_x(x_0、y_0) = F_y(x_0、y_0) = 0$$F_x(x_0、y_0) = F_y(x_0、y_0) = 0
 

$$F(x_0、y_0) = 0$$F(x_0、y_0) = 0
 

$$(x_0、y_0)$$(x_0、y_0)
 

$$F(x、y) = 0$$F(x、y) = 0
 

$$F_y(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0$$F_y(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0
 

$$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0$$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0
 

$$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq$$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq
 

$$F_x(x_0、y_0) = \frac{\delta y}{\delta x}$$F_x(x_0、y_0) = \frac{\delta y}{\delta x}
 

$$F_x(x_0、y_0) = \delta y/\delta x$$F_x(x_0、y_0) = \delta y/\delta x
 

$$F_x(x_0、y_0) = \delta y$$F_x(x_0、y_0) = \delta y
 

$$F_x(x_0、y_0) = \deltay$$F_x(x_0、y_0) = \deltay
 

$$F_x(x_0、y_0) = \delta$$F_x(x_0、y_0) = \delta
 

$$F_x(x_0、y_0)$$F_x(x_0、y_0)
 

$$F_1$$F_1
 

$$x^2+y^2-1=0$$x^2+y^2-1=0
 

$$y=\sqrt{1-x^2}$$y=\sqrt{1-x^2}
 

$$y=\sqrt{1286656900$$y=\sqrt{1286656900
 

$$y=\sqrt{1286656900}$$y=\sqrt{1286656900}
 

$$y=\sqrt\frac{1286656900}{111110888889}$$y=\sqrt\frac{1286656900}{111110888889}
 

$$\sqrt\frac{1286656900}{111110888889}$$\sqrt\frac{1286656900}{111110888889}
 

$$y = \sqrt$$y = \sqrt
 

$$F(x、y) = 0$$F(x、y) = 0
 

$$F(x\$$F(x\
 

$$F(x $$F(x
 

$$F(xy)=0$$F(xy)=0
 

$$F(x_$$F(x_
 

$$F(x$$F(x
 

$$y=f(x)$$y=f(x)
 

$$2/2+1$$2/2+1
 

$$$$
 

$$$$
 

$$Y =$$Y =
 

$$xy^2$$xy^2
 

$$$$
 

$$Thank you$$Thank you
 

$$Thank you$$Thank you
 

$$z=$$z=
 

$$h=$$h=
 

$$x= $$x=
 

$$limXX→お猿さん$$limXX→お猿さん
 

$$h$$h
 

$$(x+3)(2x −3)$$(x+3)(2x −3)
 

$$$$
 

$$$$
 

$$55$$55
 

$$ビッグモーター$$ビッグモーター
 

$$$$
 

$$$$
 

$$y=\frac7{25}lx$$y=\frac7{25}lx
 

$$y=\frac15lx$$y=\frac15lx
 

$$y=\frac3{25}lx$$y=\frac3{25}lx
 

$$y=\frac3(25)lx$$y=\frac3(25)lx
 

$$y=\frac25lx$$y=\frac25lx
 

$$y=\frac25fx$$y=\frac25fx
 

$$¥sqrt((2 ¥mu g l + v_0^2$$¥sqrt((2 ¥mu g l + v_0^2
 

$$$$
 

$$y=$$y=
 

$$x=$$x=
 

$$∠y=$$∠y=
 

$$ℓ=m$$ℓ=m
 

$$l=m$$l=m
 

$$次の図において,∠x の大きさを求めなさい。$$次の図において,∠x の大きさを求めなさい。
 

$$yの値を求めなさい。$$yの値を求めなさい。
 

$$∠x=$$∠x=
 

$$(x²-4x+2)$$(x²-4x+2)
 

$$g=(4π^2 L/T^2)$$g=(4π^2 L/T^2)
 

$$$$
 

$$shun$$shun
 

$$\bar{z_{164}}$$\bar{z_{164}}
 

$$隕∫エ逡ェ蜿キ 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 蟷ウ蝮・ィ呎コ門喧繧ケ繧ウ繧「 1 x_{11} x_{12} x_{13} x_{14} z_{11} z_{12} z_{13} z_{14} \bar{z_1} 2 x_{21} x_{22} x_{23} x_{24} z_{21} z_{22} z_{23} z_{24} \bar{z_2} … … … … … … … … … … 164 x_{1641} x_{1642} x_{1643} x_{1644} z_{1641} z_{1642} z_{1643} z_{1644} \bar{z_{164}}$$隕∫エ逡ェ蜿キ 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 蟷ウ蝮・ィ呎コ門喧繧ケ繧ウ繧「 1 x_{11} x_{12} x_{13} x_{14} z_{11} z_{12} z_{13} z_{14} \bar{z_1} 2 x_{21} x_{22} x_{23} x_{24} z_{21} z_{22} z_{23} z_{24} \bar{z_2} … … … … … … … … … … 164 x_{1641} x_{1642} x_{1643} x_{1644} z_{1641} z_{1642} z_{1643} z_{1644} \bar{z_{164}}
 

$$$$
 

$$10_10_10$$10_10_10
 

$$10$$$10$
 

$$suki$$suki
 

$$$$
 

$$$$
 

$$X=$$X=
 

$$5分の8$$5分の8
 

$$$$
 

$$525$$525
 

$$\sqrt\frac{1286656900}{111110888889}$$\sqrt\frac{1286656900}{111110888889}
 

$$100000000$$100000000
 

$$6\int^2_1$$6\int^2_1
 

$$sukebe$$sukebe
 

$$y=ax^2$$y=ax^2
 

$$y-ax^2$$y-ax^2
 

$$y=ax~2$$y=ax~2
 

$$𝕌(n^1)=t⁷$$𝕌(n^1)=t⁷
 

$$yo$$yo
 

$$1/(1+e^-y)$$1/(1+e^-y)
 

$$(?_?)$$(?_?)
 

$$?^?$$?^?
 

$$(?o?)!$$(?o?)!
 

$$volleyball$$volleyball
 

$$$$
 

$$sin=Uz⁰$$sin=Uz⁰
 

$$$$
 

$$あああ$$あああ
 

$$f(u)∋k=y0u$$f(u)∋k=y0u
 

$$kor=0∫Uz⁰$$kor=0∫Uz⁰
 

$$ijreklgnakfjvalkfnalke$$ijreklgnakfjvalkfnalke
 

$$$$
 

$$1-1$$1-1
 

$$$$
 

$$∠x=$$∠x=
 

$$$a$$$$a$
 

$$$$
 

$$2l/πd$$2l/πd
 

$$y=((x)/(2))+((1)/(2))$$y=((x)/(2))+((1)/(2))
 

$$sum(2x)$$sum(2x)
 

$$$$
 

$$aν^{3}e^\frac{-bν}{T}$$aν^{3}e^\frac{-bν}{T}
 

$$aν^{3}e^/frac{-bν}{T}$$aν^{3}e^/frac{-bν}{T}
 

$$u(ν$$u(ν
 

$$u(ν$$u(ν
 

$$\sum_{k=1}^{∞} \frac{1}{k^{2}} = \frac{π^{2}}{6}$$\sum_{k=1}^{∞} \frac{1}{k^{2}} = \frac{π^{2}}{6}
 

$$En= -\frac{2π²k₀^{2}me⁴}{h²}\frac{1}{n²}$$En= -\frac{2π²k₀^{2}me⁴}{h²}\frac{1}{n²}
 

$$h=6.626 × 10^{-34} $$h=6.626 × 10^{-34} 
 

$$h=6.626 × 10{-34} $$h=6.626 × 10{-34} 
 

$$ h=6.626 × 10-34 $$ h=6.626 × 10-34 
 

$$(ν:光の振動数、c:光速度、T:絶対温度、k:ボルツマン定数、h:定数)$$(ν:光の振動数、c:光速度、T:絶対温度、k:ボルツマン定数、h:定数)
 

$$n:自然数$$n:自然数
 

$$h→0$$h→0
 

$$h→0$$h→0
 

$$mvλ$$mvλ
 

$$cv$$cv
 

$$e=k₀$$e=k₀
 

$$c$$c
 

$$Tkh$$Tkh
 

$$Tkh$$Tkh
 

$$c$$c
 

$$ν$$ν
 

$$h=6.6260775×10^{-34}$$h=6.6260775×10^{-34}
 

$$h=6.6260775×10^(-34)$$h=6.6260775×10^(-34)
 

$$h=6.6260775×10^-34$$h=6.6260775×10^-34
 

$$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^\frac{hν}{kT}-1}$$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^\frac{hν}{kT}-1}
 

$$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^(hν/kT)-1}$$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^(hν/kT)-1}
 

$$u(ν)=\frac{8πhν^3}{c^3}$$u(ν)=\frac{8πhν^3}{c^3}
 

$$2πr=nλ$$2πr=nλ
 

$$λ= \frac{h}{mv}$$λ= \frac{h}{mv}
 

$$λ= \frac{h}{mc}$$λ= \frac{h}{mc}
 

$$mc²=hν$$mc²=hν
 

$$mc²=fλ$$mc²=fλ
 

$$c=fλ$$c=fλ
 

$$E=hν$$E=hν
 

$$E=mc²$$E=mc²
 

$$En= -\frac{2π²k₀²me⁴}{h²}\frac{1}{n²}$$En= -\frac{2π²k₀²me⁴}{h²}\frac{1}{n²}
 

$$r= \frac{h²}{4π²k₀me²}n²$$r= \frac{h²}{4π²k₀me²}n²
 

$$r= \frac{h²}{4π²k₀me²}$$r= \frac{h²}{4π²k₀me²}
 

$$E=hν$$E=hν
 

$$2πr= \frac{h}{mv}$$2πr= \frac{h}{mv}
 

$$2π= \frac{h}{mv}$$2π= \frac{h}{mv}
 

$$2π = \frac{2π}{mv}$$2π = \frac{2π}{mv}
 

$$\frac{2π}{mv}$$\frac{2π}{mv}
 

$$\frac{2π}{/mv}$$\frac{2π}{/mv}
 

$$\frac{2π}{\sqrt{信号数 + 背景事象数}}$$\frac{2π}{\sqrt{信号数 + 背景事象数}}
 

$$2\p r = h / mv$$2\p r = h / mv
 

$$$$
 

$$2$$2
 

$$$$
 

$$$$
 

$$646789764644$$646789764644
 

$$あ$$あ
 

$$あ$$あ
 

$$\frac{信号数}{\sqrt{信号数 + 背景事象数}}$$\frac{信号数}{\sqrt{信号数 + 背景事象数}}
 

$$\frac{イベント数}{\sqrt{イベント数}}$$\frac{イベント数}{\sqrt{イベント数}}
 

$$¥frac{イベント数}{¥sqrt{イベント数}}$$¥frac{イベント数}{¥sqrt{イベント数}}
 

$$1/2$$1/2
 

$$15$$15
 

$$$$
 

$$20$$20
 

$$1430$$1430
 

$$y={-b±√(b^2-4ac)}/2a$$y={-b±√(b^2-4ac)}/2a
 

$$y=(-b±√b^2-4ac)/2a$$y=(-b±√b^2-4ac)/2a
 

$$y=_b$$y=_b
 

$$$$
 

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2}$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2}
 

$$f(x) = \frac{1}{2^{\frac{N}{2}-1}\Gamma(\frac{N}{2})} \exp(-\frac{x^2}{2}) x^{N-1}$$f(x) = \frac{1}{2^{\frac{N}{2}-1}\Gamma(\frac{N}{2})} \exp(-\frac{x^2}{2}) x^{N-1}
 

$$\Gamma (x) = \int_0^\infty t^{x-1} e^t dt$$\Gamma (x) = \int_0^\infty t^{x-1} e^t dt
 

$$\Gamma (x) = \int_0^\infty$$\Gamma (x) = \int_0^\infty
 

$$\chi = \sqrt{z_1^2 + z_2^2}$$\chi = \sqrt{z_1^2 + z_2^2}
 

$$ds = \sqrt{dy^2 + dz^2}$$ds = \sqrt{dy^2 + dz^2}
 

$$\chi^2 = z_1^2 + z_2^2$$\chi^2 = z_1^2 + z_2^2
 

$$\TeX$$\TeX
 

$$|S| \le 2$$|S| \le 2
 

$$R_{\mu\nu} – \frac{1}{2}g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$R_{\mu\nu} – \frac{1}{2}g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}
 

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2
 

$$y = \frac{a}{b} (\rm{example})$$y = \frac{a}{b} (\rm{example})
 

タイトルとURLをコピーしました