2022.10.12 2022.09.04 [TeX] 数式メーカー ver0.93MathJaxを使用した一行数式メーカーです。(Macでは、バックスラッシュはoption + ¥) $$thank you$$thank you $$t$$t $$$$ $$39$$39 $$3と15分の1$$3と15分の1 $$3 1/15$$3 1/15 $$T(n)=(T(a)×a)/n$$T(n)=(T(a)×a)/n $$∫log(logx)dx$$∫log(logx)dx $$y=1/r^2$$y=1/r^2 $$2025=(1+2+…+9)^2=1^3+2^3+…+9^3$$2025=(1+2+…+9)^2=1^3+2^3+…+9^3 $$2025=(1+2+$$2025=(1+2+ $$$$ $$100(1+2%){1+8%}$$100(1+2%){1+8%} $$100*(1+2%)/(1+8%)$$100*(1+2%)/(1+8%) $$\sqrt{(X_{middle}-X_{center})^2+(Z_{middle}-Z_{center})^2}=rcos(\frac{θ_{AB}}{2})$$\sqrt{(X_{middle}-X_{center})^2+(Z_{middle}-Z_{center})^2}=rcos(\frac{θ_{AB}}{2}) $$X_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+X_{middle}$$X_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+X_{middle} $$Z_{center}=m(X_{center}-X_{middle})+Z_{middle}$$Z_{center}=m(X_{center}-X_{middle})+Z_{middle} $$Z_{center}=m(x_{center}-x_{middle})+Z_{middle}$$Z_{center}=m(x_{center}-x_{middle})+Z_{middle} $$m=-\frac{X_B-X_A}{Z_B-Z_A}$$m=-\frac{X_B-X_A}{Z_B-Z_A} $$X_{middle}=\frac{X_A+X_B}{2}$$X_{middle}=\frac{X_A+X_B}{2} $$X_middle=\frac{X_A+X_B}{2}$$X_middle=\frac{X_A+X_B}{2} $$-\frac{X_B-X_A}{Z_B-Z_A}$$-\frac{X_B-X_A}{Z_B-Z_A} $$x_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{(rcos(\frac{θ_{AB}}{2}))^2}{m^2+1}}+x_{middle} $$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(\frac{θ_{AB}}{2})$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(\frac{θ_{AB}}{2}) $$x_{center}=-\sqrt{\frac{(rcos(\frac{θ}{2}))^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{(rcos(\frac{θ}{2}))^2}{m^2+1}}+x_{middle} $$Z_B=Z_{B2}-(S+r_{stylus})sin(θ_{AB})$$Z_B=Z_{B2}-(S+r_{stylus})sin(θ_{AB}) $$X_B=X_{B2}-(S+r_{stylus})cos(θ_{AB})$$X_B=X_{B2}-(S+r_{stylus})cos(θ_{AB}) $$r=\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}$$r=\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})} $$\frac{\sqrt{(X_B-r=X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}$$\frac{\sqrt{(X_B-r=X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})} $$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})}$$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_{AB}}{2})} $$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_AB}{2})}$$\frac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\frac{θ_AB}{2})} $$\flac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\flac{θ_AB}{2})}$$\flac{\sqrt{(X_B-X_A)^2+(Z_B-Z_A)^2}}{2sin(\flac{θ_AB}{2})} $$x_{center}=-\sqrt{\frac{[rcos(2.5°)]^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{[rcos(2.5°)]^2}{m^2+1}}+x_{middle} $$x_{center}=-\sqrt{\frac{{rcos(2.5°)}^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{{rcos(2.5°)}^2}{m^2+1}}+x_{middle} $$x_{center}=-\sqrt{\frac{(rcos(2.5°))^2}{m^2+1}}+x_{middle}$$x_{center}=-\sqrt{\frac{(rcos(2.5°))^2}{m^2+1}}+x_{middle} $$\frac{2}{23}$$\frac{2}{23} $$\frac{1}$$\frac{1} $$x_{center}=-\sqrt{\frac{1}}$$x_{center}=-\sqrt{\frac{1}} $$x_{center}=-\sqrt{2}$$x_{center}=-\sqrt{2} $$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center})^2}=rcos(2.5°) $$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)}^2}=rcos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)}^2}=rcos(2.5°) $$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}}=rcos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}}=rcos(2.5°) $$\sqrt{(x_{middle}}$$\sqrt{(x_{middle}} $$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2} $$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°) $$\sqrt{2}$$\sqrt{2} $$/sqrt{2}$$/sqrt{2} $$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°)$$\sqrt{(x_{middle}-x_{center})^2+(z_{middle}-z_{center)^2}=r\cos(2.5°) $$sqrt1$$sqrt1 $$z_{center}=m_{middle}(x-x_{middle})+z_{middle}$$z_{center}=m_{middle}(x-x_{middle})+z_{middle} $$Z_{center}=m_{middle}(x-x_{middle})+Z_{middle}$$Z_{center}=m_{middle}(x-x_{middle})+Z_{middle} $$Z_{center}=m{middle}(x-x_{middle})+Z_{middle}$$Z_{center}=m{middle}(x-x_{middle})+Z_{middle} $$Z_{center}$$Z_{center} $$Z_(center)$$Z_(center) $$$$ $$1+2$$1+2 $$$$ $$y=3x+8$$y=3x+8 $$2(iro)$$2(iro) $$1$$1 $$ORIGIN$$ORIGIN $$Qf=Q/(1-m)$$Qf=Q/(1-m) $$Qy = A(-5^2) + B × -5 + C$$Qy = A(-5^2) + B × -5 + C $$Qx = AP^2 + BP + C$$Qx = AP^2 + BP + C $$Qz = \frac{Q}{Qx} × Qy$$Qz = \frac{Q}{Qx} × Qy $$Qn = Qt × \frac{273+to}{273+t} × \frac{B}{1013}$$Qn = Qt × \frac{273+to}{273+t} × \frac{B}{1013} $$Qn = Qt*273+to/273+t*B/1013$$Qn = Qt*273+to/273+t*B/1013 $$Vo1={(R1+R2)/R1}・Vin$$Vo1={(R1+R2)/R1}・Vin $$00001110110101100010111001110110$$00001110110101100010111001110110 $$pktn$$pktn $$$$ $$\[ \mathcal{C}(x$$\[ \mathcal{C}(x $$64$$64 $$15$$15 $$10$$10 $$lim$$lim $$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k k!}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k k!}{\dfrac{\left( 2n\right) !}{2^{n}}} $$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_{2n-k} \mathrm{C}_k}{\dfrac{\left( 2n\right) !}{2^{n}}} $$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_n \mathrm{C}_r}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !{}_n \mathrm{C}_r}{\dfrac{\left( 2n\right) !}{2^{n}}} $$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !}{\dfrac{\left( 2n\right) !}{2^{n}}}$$1-\dfrac{\sum ^{n}_{k=1}\left( -1\right) ^{k-1}\left( 2n-2k\right) !}{\dfrac{\left( 2n\right) !}{2^{n}}} $$$$ $$$$ $$S=234 n=0 ∑ ∞ ( 2 1 ) n$$S=234 n=0 ∑ ∞ ( 2 1 ) n $$S=234 n=0 ∑ ∞ ( 2 1 ) n$$S=234 n=0 ∑ ∞ ( 2 1 ) n $$n \simeq p = \frac{4k}{N}$$n \simeq p = \frac{4k}{N} $$n ~- p = \frac{4k}{N}$$n ~- p = \frac{4k}{N} $$n ~= p = \frac{4k}{N}$$n ~= p = \frac{4k}{N} $$\frac{\frac{πr^2}{4}}{r^2} = \frac{π}{4}$$\frac{\frac{πr^2}{4}}{r^2} = \frac{π}{4} $$\frac{πr^2}{4}\frac{r^2} = \frac{π}{4}$$\frac{πr^2}{4}\frac{r^2} = \frac{π}{4} $$\frac{πr^2}{4}{r^2} = \frac{π}{4}$$\frac{πr^2}{4}{r^2} = \frac{π}{4} $$\frac{2}{3}$$\frac{2}{3} $$$$ $$E = 10^{(-1/slope)}-1$$E = 10^{(-1/slope)}-1 $$E = 10^{-1/slope}-1$$E = 10^{-1/slope}-1 $$E = 10^(-1/slope)-1$$E = 10^(-1/slope)-1 $$E = 10^[-1/slope]-1$$E = 10^[-1/slope]-1 $$E = 10[-1/slope]-1$$E = 10[-1/slope]-1 $$a=$$a= $$yの変域:$$yの変域: $$xの変域:$$xの変域: $$xの変域$$xの変域 $$W=$$W= $$v_A – v_B = \frac{2 \text{ km}}{\frac{5}{6} \text{ h}} = \frac{2 \times 6}{5} = \frac{12}{5} \text{ km/h} = 2.4 \text{ km/h} \]$$v_A – v_B = \frac{2 \text{ km}}{\frac{5}{6} \text{ h}} = \frac{2 \times 6}{5} = \frac{12}{5} \text{ km/h} = 2.4 \text{ km/h} \] $$2+3$$2+3 $$an+1=pan-q$$an+1=pan-q $$$$ $$FC2P^2v$$FC2P^2v $$シグマ n*n$$シグマ n*n $$Σ$$Σ $$$$ $$$$ $$$$ $$2x²-x-15=0$$2x²-x-15=0 $$$$ $$/sigma$$/sigma $$$$ $$$$ $$$$ $$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{…}}}}}} = 2$$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{…}}}}}} = 2 $$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }}}}}}$$\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }^{\sqrt{ 2 }}}}}} $$\”\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }”$$\”\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }” $$\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }$$\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 }^\sqrt{ 2 } $$“an=∑k=1nbk”$$“an=∑k=1nbk” $$“an\=∑k\=1nbk”$$“an\=∑k\=1nbk” $$“an\=∑k\=1nbk”$$“an\=∑k\=1nbk” $$V²$$V² $$1*2$$1*2 $$$$ $$$$ $$At$$At $$ax^2+bx+c$$ax^2+bx+c $$$$ $$V-I₃R₃/I₃・(R₂+R₃)/R₂$$V-I₃R₃/I₃・(R₂+R₃)/R₂ $$V-I₃R₃$$V-I₃R₃ $$$$ $$$$ $$労働生産性 = \frac{経済的成果(\text{output})}{人数・時間(input)}$$労働生産性 = \frac{経済的成果(\text{output})}{人数・時間(input)} $$労働生産性 = \frac{経済的成果(output)}{人数・時間(input)}$$労働生産性 = \frac{経済的成果(output)}{人数・時間(input)} $$あああ = \frac{労働生産性}{労働生産sネイ}$$あああ = \frac{労働生産性}{労働生産sネイ} $$Sh$$Sh $$logQ=26.53-1.09logY-4.99logA+3.87logB$$logQ=26.53-1.09logY-4.99logA+3.87logB $$logQ=$$logQ= $$logQ=a₁+a₂logY+a₃logA+a₄logB$$logQ=a₁+a₂logY+a₃logA+a₄logB $$logQ=a1+a2logY+a3logA+a4logB$$logQ=a1+a2logY+a3logA+a4logB $$logQ=a1$$logQ=a1 $$$$ $$癶$$癶 $$、$$、 $$𠘨$$𠘨 $$$$ $$X二乗$$X二乗 $$|H_{i+1} – H_i |$$|H_{i+1} – H_i | $$|H_{I+1} + H_i |$$|H_{I+1} + H_i | $$|H_(i+1) + H_i |$$|H_(i+1) + H_i | $$H_i$$H_i $$\documentclass{article} \usepackage{amsmath} \begin{document} \[ y = \begin{cases} 0 & \text{if } b + w_1 x_1 + w_2 x_2 \leq 0 \\ 1 & \text{if } b + w_1 x_1 + w_2 x_2 > 0 \end{cases} \] \end{document}$$\documentclass{article} \usepackage{amsmath} \begin{document} \[ y = \begin{cases} 0 & \text{if } b + w_1 x_1 + w_2 x_2 \leq 0 \\ 1 & \text{if } b + w_1 x_1 + w_2 x_2 > 0 \end{cases} \] \end{document} $$$$ $$200$$200 $$ℓ$$ℓ $$l$$l $$f = st^-2$$f = st^-2 $$f(t) = st^-2$$f(t) = st^-2 $$t^-2$$t^-2 $$形質転換効率 (cfu⁄1 µg)=コロニー数 (平均値)×プラスミド量の補正 (1 µg⁄(X )µg)×サンプリング量の補正 (1.0 mL⁄0.1 mL)$$形質転換効率 (cfu⁄1 µg)=コロニー数 (平均値)×プラスミド量の補正 (1 µg⁄(X )µg)×サンプリング量の補正 (1.0 mL⁄0.1 mL) $$sinE=g⁰m1$$sinE=g⁰m1 $$$$ $$xG$$xG $$volleyball$$volleyball $$sinE=g⁰m1$$sinE=g⁰m1 $$寒い$$寒い $$寒い$$寒い $$1010$$1010 $$$$ $$$$ $$$$ $$面積$$面積 $$365$$365 $$2833$$2833 $$\gamma(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta)$$\gamma(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta) $$$$ $$r(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta)$$r(\theta) = (r(\theta)cos\theta、r(\theta)sin\theta) $$r= r(\theta)$$r= r(\theta) $$(r、\theta)$$(r、\theta) $$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx})^2}dt$$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx})^2}dt $$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx}^2}dt$$L(\gamma) =\int_{b}^{a} \sqrt{1+(\frac{dy}{dx}^2}dt $$L(\gamma) =\int_{b}^{a} |\dot{\gamma}(t)|dt$$L(\gamma) =\int_{b}^{a} |\dot{\gamma}(t)|dt $$|\dot{\gamma}|$$|\dot{\gamma}| $$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{\dot{x}^2+\dot{y}^2}dt$$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{\dot{x}^2+\dot{y}^2}dt $$\dot{\gamma}(c)\neq0$$\dot{\gamma}(c)\neq0 $$\dot{\gamma}(c)=0$$\dot{\gamma}(c)=0 $$\dot{\gamma}(c)$$\dot{\gamma}(c) $$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t)) (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt})$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t)) (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt}) $$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t)) (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt}$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t)) (\dot{x} = \frac{dx}{dt}、\dot{y} = \frac{dy}{dt} $$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t)) (\dot{x} = \frac{dx}{dt}$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t)) (\dot{x} = \frac{dx}{dt} $$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t))$$\dot{\gamma}(t) := (\dot{x}(t)、\dot{y}(t)) $$\dot{\gamma}$$\dot{\gamma} $$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{x^2+y^2}dt$$L(\gamma) = \int_{b}^{a} \sqrt{(\frac{dx}{dt})^2+(\frac{dy}{dt})^2}dt = \int_{b}^{a} \sqrt{x^2+y^2}dt $$L(\gamma) = \int_{b}^{a} \sqrtf(x) dx$$L(\gamma) = \int_{b}^{a} \sqrtf(x) dx $$L(\gamma) = \int_{b}^{a} f(x) dx$$L(\gamma) = \int_{b}^{a} f(x) dx $$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} =\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t$$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} =\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t $$\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t$$\sqrt{(\frac{\Delta x}{\Delta t})^2+(\frac{\Delta y}{\Delta t})^2}\Delta t $$\sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2$$\sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2 $$\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2$$\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2 $$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2$$|\gamma (t+\Delta t) – \gamma (t)| = \sqrt{(\Delta x)^2+(\Delta y)^2} = \sqrt{(frac{\Delta x}{\Delta t})^2+(frac{\Delta y}{\Delta t})^}\Delta t2 $$\Delta x := x(t+\Delta t) – x(t)、 \Delta y := y(t+\Delta t) – y(t)$$\Delta x := x(t+\Delta t) – x(t)、 \Delta y := y(t+\Delta t) – y(t) $$\Delta x :=$$\Delta x := $$t = tan(r/2)$$t = tan(r/2) $$t = tan(s/2)$$t = tan(s/2) $$x(r) = cosr、 y(r)= sinr (-\pi \leq r \leqq \pi)$$x(r) = cosr、 y(r)= sinr (-\pi \leq r \leqq \pi) $$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2} (t\in \mathbb{R})$$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2} (t\in \mathbb{R}) $$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2} (t\in \mathbb{R}$$x(t) = \frac{1-t^2}{1+t^2}、 y(t) = \frac{2t}{1+t^2} (t\in \mathbb{R} $$\gamma (t) = (t、f(t))$$\gamma (t) = (t、f(t)) $$|\gamma (t+\Delta t) – \gamma (t)|$$|\gamma (t+\Delta t) – \gamma (t)| $$\gamma (t) = (x(t)、y(t)) (a\leqq t \leqq b)$$\gamma (t) = (x(t)、y(t)) (a\leqq t \leqq b) $$F_y(x_0、y_0) = \frac{\delta F}{\delta y} \neq 0$$F_y(x_0、y_0) = \frac{\delta F}{\delta y} \neq 0 $$\gamma (t) = (x(t)、y(t))$$\gamma (t) = (x(t)、y(t)) $$\gamma[$$\gamma[ $$(a^2-x^2-y^2)^3 – 27a^2x^2y^2 = 0$$(a^2-x^2-y^2)^3 – 27a^2x^2y^2 = 0 $$(x^2 + y^2)^2 – a^2(x^2 – y^2) = 0$$(x^2 + y^2)^2 – a^2(x^2 – y^2) = 0 $$\frac{x^2}{a^2} – \frac{y^2}{b^2} – 1 = 0$$\frac{x^2}{a^2} – \frac{y^2}{b^2} – 1 = 0 $$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1 = 0$$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1 = 0 $$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1=0$$\frac{x^2}{a^2} + \frac{y^2}{b^2} – 1=0 $$F_x(x_0、y_0) = F_y(x_0、y_0) = 0$$F_x(x_0、y_0) = F_y(x_0、y_0) = 0 $$F(x_0、y_0) = 0$$F(x_0、y_0) = 0 $$(x_0、y_0)$$(x_0、y_0) $$F(x、y) = 0$$F(x、y) = 0 $$F_y(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0$$F_y(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0 $$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0$$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq 0 $$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq$$F_x(x_0、y_0) = \frac{\delta y}{\delta x} \neq $$F_x(x_0、y_0) = \frac{\delta y}{\delta x}$$F_x(x_0、y_0) = \frac{\delta y}{\delta x} $$F_x(x_0、y_0) = \delta y/\delta x$$F_x(x_0、y_0) = \delta y/\delta x $$F_x(x_0、y_0) = \delta y$$F_x(x_0、y_0) = \delta y $$F_x(x_0、y_0) = \deltay$$F_x(x_0、y_0) = \deltay $$F_x(x_0、y_0) = \delta$$F_x(x_0、y_0) = \delta $$F_x(x_0、y_0)$$F_x(x_0、y_0) $$F_1$$F_1 $$x^2+y^2-1=0$$x^2+y^2-1=0 $$y=\sqrt{1-x^2}$$y=\sqrt{1-x^2} $$y=\sqrt{1286656900$$y=\sqrt{1286656900 $$y=\sqrt{1286656900}$$y=\sqrt{1286656900} $$y=\sqrt\frac{1286656900}{111110888889}$$y=\sqrt\frac{1286656900}{111110888889} $$\sqrt\frac{1286656900}{111110888889}$$\sqrt\frac{1286656900}{111110888889} $$y = \sqrt$$y = \sqrt $$F(x、y) = 0$$F(x、y) = 0 $$F(x\$$F(x\ $$F(x $$F(x $$F(xy)=0$$F(xy)=0 $$F(x_$$F(x_ $$F(x$$F(x $$y=f(x)$$y=f(x) $$2/2+1$$2/2+1 $$$$ $$$$ $$Y =$$Y = $$xy^2$$xy^2 $$$$ $$Thank you$$Thank you $$Thank you$$Thank you $$z=$$z= $$h=$$h= $$x= $$x= $$limXX→お猿さん$$limXX→お猿さん $$h$$h $$(x+3)(2x −3)$$(x+3)(2x −3) $$$$ $$$$ $$55$$55 $$ビッグモーター$$ビッグモーター $$$$ $$$$ $$y=\frac7{25}lx$$y=\frac7{25}lx $$y=\frac15lx$$y=\frac15lx $$y=\frac3{25}lx$$y=\frac3{25}lx $$y=\frac3(25)lx$$y=\frac3(25)lx $$y=\frac25lx$$y=\frac25lx $$y=\frac25fx$$y=\frac25fx $$¥sqrt((2 ¥mu g l + v_0^2$$¥sqrt((2 ¥mu g l + v_0^2 $$$$ $$y=$$y= $$x=$$x= $$∠y=$$∠y= $$ℓ=m$$ℓ=m $$l=m$$l=m $$次の図において,∠x の大きさを求めなさい。$$次の図において,∠x の大きさを求めなさい。 $$yの値を求めなさい。$$yの値を求めなさい。 $$∠x=$$∠x= $$(x²-4x+2)$$(x²-4x+2) $$g=(4π^2 L/T^2)$$g=(4π^2 L/T^2) $$$$ $$shun$$shun $$\bar{z_{164}}$$\bar{z_{164}} $$隕∫エ逡ェ蜿キ 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 蟷ウ蝮・ィ呎コ門喧繧ケ繧ウ繧「 1 x_{11} x_{12} x_{13} x_{14} z_{11} z_{12} z_{13} z_{14} \bar{z_1} 2 x_{21} x_{22} x_{23} x_{24} z_{21} z_{22} z_{23} z_{24} \bar{z_2} … … … … … … … … … … 164 x_{1641} x_{1642} x_{1643} x_{1644} z_{1641} z_{1642} z_{1643} z_{1644} \bar{z_{164}}$$隕∫エ逡ェ蜿キ 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ隧穂セ。 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 隧穂セ。閠・縺ョ讓呎コ門喧 蟷ウ蝮・ィ呎コ門喧繧ケ繧ウ繧「 1 x_{11} x_{12} x_{13} x_{14} z_{11} z_{12} z_{13} z_{14} \bar{z_1} 2 x_{21} x_{22} x_{23} x_{24} z_{21} z_{22} z_{23} z_{24} \bar{z_2} … … … … … … … … … … 164 x_{1641} x_{1642} x_{1643} x_{1644} z_{1641} z_{1642} z_{1643} z_{1644} \bar{z_{164}} $$$$ $$10_10_10$$10_10_10 $$10$$$10$ $$suki$$suki $$$$ $$$$ $$X=$$X= $$5分の8$$5分の8 $$$$ $$525$$525 $$\sqrt\frac{1286656900}{111110888889}$$\sqrt\frac{1286656900}{111110888889} $$100000000$$100000000 $$6\int^2_1$$6\int^2_1 $$sukebe$$sukebe $$y=ax^2$$y=ax^2 $$y-ax^2$$y-ax^2 $$y=ax~2$$y=ax~2 $$𝕌(n^1)=t⁷$$𝕌(n^1)=t⁷ $$yo$$yo $$1/(1+e^-y)$$1/(1+e^-y) $$(?_?)$$(?_?) $$?^?$$?^? $$(?o?)!$$(?o?)! $$volleyball$$volleyball $$$$ $$sin=Uz⁰$$sin=Uz⁰ $$$$ $$あああ$$あああ $$f(u)∋k=y0u$$f(u)∋k=y0u $$kor=0∫Uz⁰$$kor=0∫Uz⁰ $$ijreklgnakfjvalkfnalke$$ijreklgnakfjvalkfnalke $$$$ $$1-1$$1-1 $$$$ $$∠x=$$∠x= $$$a$$$$a$ $$$$ $$2l/πd$$2l/πd $$y=((x)/(2))+((1)/(2))$$y=((x)/(2))+((1)/(2)) $$sum(2x)$$sum(2x) $$$$ $$aν^{3}e^\frac{-bν}{T}$$aν^{3}e^\frac{-bν}{T} $$aν^{3}e^/frac{-bν}{T}$$aν^{3}e^/frac{-bν}{T} $$u(ν$$u(ν $$u(ν$$u(ν $$\sum_{k=1}^{∞} \frac{1}{k^{2}} = \frac{π^{2}}{6}$$\sum_{k=1}^{∞} \frac{1}{k^{2}} = \frac{π^{2}}{6} $$En= -\frac{2π²k₀^{2}me⁴}{h²}\frac{1}{n²}$$En= -\frac{2π²k₀^{2}me⁴}{h²}\frac{1}{n²} $$h=6.626 × 10^{-34} $$h=6.626 × 10^{-34} $$h=6.626 × 10{-34} $$h=6.626 × 10{-34} $$ h=6.626 × 10-34 $$ h=6.626 × 10-34 $$(ν:光の振動数、c:光速度、T:絶対温度、k:ボルツマン定数、h:定数)$$(ν:光の振動数、c:光速度、T:絶対温度、k:ボルツマン定数、h:定数) $$n:自然数$$n:自然数 $$h→0$$h→0 $$h→0$$h→0 $$mvλ$$mvλ $$cv$$cv $$e=k₀$$e=k₀ $$c$$c $$Tkh$$Tkh $$Tkh$$Tkh $$c$$c $$ν$$ν $$h=6.6260775×10^{-34}$$h=6.6260775×10^{-34} $$h=6.6260775×10^(-34)$$h=6.6260775×10^(-34) $$h=6.6260775×10^-34$$h=6.6260775×10^-34 $$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^\frac{hν}{kT}-1}$$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^\frac{hν}{kT}-1} $$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^(hν/kT)-1}$$u(ν)=\frac{8πhν^3}{c^3}\frac{1}{e^(hν/kT)-1} $$u(ν)=\frac{8πhν^3}{c^3}$$u(ν)=\frac{8πhν^3}{c^3} $$2πr=nλ$$2πr=nλ $$λ= \frac{h}{mv}$$λ= \frac{h}{mv} $$λ= \frac{h}{mc}$$λ= \frac{h}{mc} $$mc²=hν$$mc²=hν $$mc²=fλ$$mc²=fλ $$c=fλ$$c=fλ $$E=hν$$E=hν $$E=mc²$$E=mc² $$En= -\frac{2π²k₀²me⁴}{h²}\frac{1}{n²}$$En= -\frac{2π²k₀²me⁴}{h²}\frac{1}{n²} $$r= \frac{h²}{4π²k₀me²}n²$$r= \frac{h²}{4π²k₀me²}n² $$r= \frac{h²}{4π²k₀me²}$$r= \frac{h²}{4π²k₀me²} $$E=hν$$E=hν $$2πr= \frac{h}{mv}$$2πr= \frac{h}{mv} $$2π= \frac{h}{mv}$$2π= \frac{h}{mv} $$2π = \frac{2π}{mv}$$2π = \frac{2π}{mv} $$\frac{2π}{mv}$$\frac{2π}{mv} $$\frac{2π}{/mv}$$\frac{2π}{/mv} $$\frac{2π}{\sqrt{信号数 + 背景事象数}}$$\frac{2π}{\sqrt{信号数 + 背景事象数}} $$2\p r = h / mv$$2\p r = h / mv $$$$ $$2$$2 $$$$ $$$$ $$646789764644$$646789764644 $$あ$$あ $$あ$$あ $$\frac{信号数}{\sqrt{信号数 + 背景事象数}}$$\frac{信号数}{\sqrt{信号数 + 背景事象数}} $$\frac{イベント数}{\sqrt{イベント数}}$$\frac{イベント数}{\sqrt{イベント数}} $$¥frac{イベント数}{¥sqrt{イベント数}}$$¥frac{イベント数}{¥sqrt{イベント数}} $$1/2$$1/2 $$15$$15 $$$$ $$20$$20 $$1430$$1430 $$y={-b±√(b^2-4ac)}/2a$$y={-b±√(b^2-4ac)}/2a $$y=(-b±√b^2-4ac)/2a$$y=(-b±√b^2-4ac)/2a $$y=_b$$y=_b $$$$ $$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2}$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2} $$f(x) = \frac{1}{2^{\frac{N}{2}-1}\Gamma(\frac{N}{2})} \exp(-\frac{x^2}{2}) x^{N-1}$$f(x) = \frac{1}{2^{\frac{N}{2}-1}\Gamma(\frac{N}{2})} \exp(-\frac{x^2}{2}) x^{N-1} $$\Gamma (x) = \int_0^\infty t^{x-1} e^t dt$$\Gamma (x) = \int_0^\infty t^{x-1} e^t dt $$\Gamma (x) = \int_0^\infty$$\Gamma (x) = \int_0^\infty $$\chi = \sqrt{z_1^2 + z_2^2}$$\chi = \sqrt{z_1^2 + z_2^2} $$ds = \sqrt{dy^2 + dz^2}$$ds = \sqrt{dy^2 + dz^2} $$\chi^2 = z_1^2 + z_2^2$$\chi^2 = z_1^2 + z_2^2 $$\TeX$$\TeX $$|S| \le 2$$|S| \le 2 $$R_{\mu\nu} – \frac{1}{2}g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu}$$R_{\mu\nu} – \frac{1}{2}g_{\mu\nu} + \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} $$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{1}{2}}(\frac{x – \mu}{\sigma})^2 $$y = \frac{a}{b} (\rm{example})$$y = \frac{a}{b} (\rm{example})